

Contents lists available at ScienceDirect

Journal of Solid State Chemistry

journal homepage: www.elsevier.com/locate/jssc

Effect of lanthanide contraction on the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien): Syntheses and characterizations of lanthanide complexes with a tetraelenidoantimonate ligand

Jing Zhao, Jingjing Liang, Yingli Pan, Yong Zhang, Dingxian Jia*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, No. 199 Hengyi Road, Suzhou 215123, People's Republic of China

ARTICLE INFO

Article history: Received 16 November 2010 Received in revised form 15 March 2011 Accepted 21 March 2011 Available online 19 April 2011

Keywords: Selenidoantimonate ligand Lanthanide Solvothermal synthesis Structure elucidation Optical properties

ABSTRACT

Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en)₂(dien)(η^2 -SbSe₄)] (*Ln*=Ce(**1a**), Nd(**1b**)), [Ln(en)₂(dien)(SbSe₄)] (*Ln*=Sm(**2a**), Gd(**2b**), Dy(**2c**)), [Ln(en)(trien)(μ - η^1 , η^2 -SbSe₄)]_{∞} (*Ln*=Ce(**3a**), Nd(**3b**)) and [Sm(en)(trien)(η^2 -SbSe₄)] (**4a**) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe₄]³⁻ acts as a monodentate ligand *mono*-SbSe₄, a bidentate chelating ligand η^2 -SbSe₄ or a tridentate bridging ligand μ - η^1 , η^2 -SbSe₄ to the lanthanide(III) center depending on the Ln³⁺ ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with *E*_g between 2.08 and 2.51 eV.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Solvothermal reactions in polyamine solvents have proven to be a fruitful approach to the synthesis of main group chalcogenidometalates combining with transition-metal (TM) complexes, and a large number of these TM containing chalcogenidometalates, including chalcogenido-germanates [1], -stannates [2], -arsenates [3], and -antimonates [4] have been synthesized in polyamine solvents of ethylenediamine (en) and diethylenetriamine (dien). Besides being the reaction solvents, the polyamine molecules also act as chelating ligands to coordinate to TM^{n+} to form the complex cations $[TM(polyamine)_m]^{n+}$, which act as space fillers and/or charge compensating ions in the chalcogenidometalates. However, the incorporation of TM^{n+} centers in chalcogenidometalate networks is seldom observed in en and dien, because the coordinate sites of TM^{n+} ions are prone to being saturated by the bidentate en and tridentate dien ligands due to the formation of octahedral complexes $[TM(en)_3]^{n+}$ and $[TM(dien)_2]^{n+}$. The TM coordinated chalcogenidometalates are only observed for Cr^{3+} and Mn^{2+} metals, including the limited examples of $[Cr(en)_2(GeS_4)]^-$, $[{Cr(en)}_2(GeSe_4)_2]^{2-}$, $[Cr(en)_2(SnSe_4)]^-$ [5], $[{Mn(en)_2}_2(en)(Sn_2S_6)]$ [6], $[Mn(dien)(AsS_4)]^-$

E-mail address: jiadingxian@suda.edu.cn (D. Jia).

[7], Cr(en)₂SbS₃ [8], [Mn₂(en)₂(Sb₂S₅)] [9], [Mn₂(dien)(Sb₂S₅)] [10], [Mn₄(en)₉(SbSe₄)₄]^{4–} [11], and [Mn₂(SbSe₄)₂(en)₄(H₂O)]^{2–} [12]. The effective incorporation of TM into chalcogenidometalate anions is well achieved by adopting the tetradentate polyamine, tris(2-aminoethyl)amine (tren), and pentadentate polyamine, tetraethylenepentamine (tepa), as structure directing agents. The TM^{*n*+} ion is then coordinated by a tren or tepa ligand and leaves one or two coordination sites free for TM–S or TM–Se bond formation with the chalcogenidometalate anions. Indeed, a large number of chalcogenidometalates incorporated with TM complexes of Mn²⁺, Fe²⁺, Co²⁺, and Ni²⁺ have been prepared with tren [13] and tepa [14] as the chelating ligands of TM^{*n*+}.

Unlike the TM^{n+} metals which exhibit the restricted stereochemistry in coordination complexes, the lanthanide (Ln) ions are characterized by variable coordination numbers and geometries [15], which theoretically provides the Ln^{3+} ions with different structural features from the TM^{n+} ions in the combination with chalcogenidometalate anionic ligands in the presence of ethylene polyamines. In recent years, we investigated the solvothermal synthetic systems Ln/M/Q (Ln=lanthanide; M=Sn, As, Sb; Q=S, Se) in en and dien, and prepared a series of lanthanide-containing chalcogenidometalates. In these lanthanide chalcogenidometalates the coordination of $[SnSe_4]^{4-}$, $[Sn_2Se_6]^{4-}$, $[Sn_4Se_9]^{6-}$ [16], $[AsSe_4]^{3-}$ [17], $[SbS_4]^{3-}$ [18], and $[SbSe_4]^{3-}$ [19,20] anions to the Ln^{3+} -en and Ln^{3+} -dien unsaturated complexes have been successfully achieved. In the case

^{*} Corresponding author. Fax: +86 512 65880089.

^{0022-4596/\$ -} see front matter \circledcirc 2011 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2011.03.039

of the Ln/Sb/Se/en system, [*Ln*(en)₄(SbSe₄)] (*Ln*=La, Ce, Pr, and Nd) and [*Ln*(en)₄]SbSe₄ · 0.5en (*Ln*=Eu, Gd, Er, Tm, and Yb) two structural types are formed along the lanthanide series [19]. In the present work, the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) are explored in detail across the lanthanide series to elucidate the lanthanide contraction effect on the structures, and neutral selenidoantimonates containing lanthanide(III) complexes of mixed ethylene polyamine ligands, [*Ln*(en)₂(dien)(η^2 -SbSe₄)] (*Ln*=Ce(**1a**), Nd(**1b**)), [*Ln*(en)₂(dien)(SbSe₄)] (*Ln*=Sm(**2a**), Gd(**2b**), Dy(**2c**)), [*Ln*(en)(trien)(μ - η^1 , η^2 -SbSe₄)]_∞ (*Ln*=Ce(**3a**), Nd(**3b**)) and [Sm(en)(trien)(η^2 -SbSe₄)] (**4a**), were prepared and characterized.

2. Experimental section

2.1. Materials and physical measurements

All the solvents and reagents for synthesis were commercially available and used as purchased. Elemental analyses were performed on a EA1110-CHNS–O elemental analyzer. Room-temperature optical diffuse reflectance spectra of the powdered sample were obtained with a Shimadzu UV-3150 spectrometer. The absorption (α /S) data were calculated from the reflectance using the Kubelka–Munk function α /S= $(1-R)^2/2R$ [21], where

Table 1	
Crystallographic data for 1a-4a	1.

R is the reflectance at a given energy, α is the absorption, and S is the scattering coefficient.

2.2. Synthesis of $[Ln(en)_2(dien)(\eta^2-SbSe_4)]$ (Ln=Ce(1a), Nd(1b))and $[Ln(en)_2(dien)(SbSe_4)]$ (Ln=Sm(2a), Gd(2b), Dy(2c))

CeCl₃ (123 mg, 0.5 mmol), Sb (61 mg, 0.5 mmol), Se (158 mg, 2 mmol), and 2 mL of a mixed en/dien (1:1(v/v)) solvent were loaded into a Teflon-lined stainless steel autoclave with an inner volume of 15 mL. The reaction was run at 180 °C for 6 days, then cooled to ambient temperature. Yellow chip crystals of 1a were filtered off, washed with ethanol and stored under vacuum (61% yield based on Sb). Red crystals of 1b (57% yield), orange crystals of 2a (48% yield), orange crystals of 2b (49% yield) and red crystals of **2c** (45% yield) were prepared with a procedure similar to that for the synthesis of **1a**, except that Nd₂O₃, Sm₂O₃, Gd₂O₃, and Dy₂O₃ were used instead of CeCl₃, respectively. All the samples are stable in dry air. Anal. Found: C 11.85, H 3.57, N 12.12. Calcd. for C₈H₂₉N₇Se₄CeSb (1a, 801.09): C 11.99, H 3.65, N 12.24%. Anal. Found: C 11.78, H 3.52, N 12.09. Calcd. for C₈H₂₉N₇Se₄NdSb (1b, 805.21): C 11.93, H 3.63, N 12.18%. Anal. Found: C 11.70, H 3.51, N 11.95. Calcd. for $C_{16}H_{58}N_{14}Se_8Sm_2Sb_2$ (2a, 1622.64): C 11.84, H 3.60, N 12.08%. Anal. Found: 11.71, H 3.50, N 11.84. Calcd. for C₁₆H₅₈N₁₄Se₈Gd₂Sb₂ (**2b**, 1636.44): C 11.74, H 3.57, N 11.98%.

	1a	1b	2a	2b
Empirical formula Formula weight Cryst syst Space group	C ₈ H ₂₉ N ₇ Se ₄ CeSb 801.09 Monoclinic P2 ₁ /n	C ₈ H ₂₉ N ₇ Se ₄ NdSb 805.21 Monoclinic P2 ₁ /n	C ₁₆ H ₅₈ N ₁₄ Se ₈ Sm ₂ Sb ₂ 1622.64 Triclinic P-1	C ₁₆ H ₅₈ N ₁₄ Se ₈ Gd ₂ Sb ₂ 1636.44 Triclinic P-1
a (Å)	8.6448(13)	8.6186(14)	10.037(3)	10.121(2)
b (Å)	27.844(4)	27.777(4)	12.117(3)	12.092(3)
c (A) α (deg) β (deg) γ (deg) V (Å ³) Z T (K)	9.3387(14) 90 109.086(2) 90 2124.3(5) 4 223(2)	9.3125(15) 90 109.211(3) 90 2105.3(6) 4 293(2)	17.125(4) 88.888(9) 88.651(9) 86.658(9) 2078.2(9) 2 223(2)	17.189(4) 89.102(10) 88.438(9) 86.889(10) 2099.6(8) 2 293(2)
$D_{calcd.}$ (g cm ⁻³) Total, unique data Parameters R_1 ($I > 2\sigma$ (I)) wR_2 (all data) GOF on F^2	2.505 11 553, 4842 191 0.0383 0.0743 1.061	2.540 20 384, 3855 191 0.0421 0.0845 1.161	2.593 19 802, 7260 371 0.0481 0.1382 1.121	2.589 20 158, 7646 374 0.0595 0.1945 1.128
	2c	3a	3b	4a
Empirical formula Formula weight Cryst syst Space group a (Å)	$C_{16}H_{58}N_{14}Se_8Dy_2Sb_2$ 1646.94 Triclinic P-1 10.107(2)	$C_8H_{26}N_6Se_4CeSb$ 784.05 Orthorhombic $P_{2_12_12_1}$ 8.9653(7)	C ₈ H ₂₆ N ₆ Se ₄ NdSb 788.18 Monoclinic P2 ₁ /n 14.307(2)	$C_8H_{26}N_6Se_4SmSb$ 794.29 Monoclinic $P2_1/c$ 10.1777(12)
b (Å)	12.069(3)	11.3985(8)	9.0127(12)	13.4837(15)
c (Å)	17.180(4)	19.7211(13)	15.427(2)	14.7983(19)
$\alpha (deg) \beta (deg) \gamma (deg) V (Å3) $	89.202(11) 88.287(9) 87.139(11) 2092.0(9)	90 90 90 2015.3(2)	90 100.775(2) 90 1954.2(5)	90 98.744(3) 90 2007.2(4)
Z T (K) $D_{calcd.}$ (g cm ⁻³) Total, unique data Davametors	2 293(2) 2.615 17,890, 6815	4 223(2) 2.584 8692, 3666	4 223(2) 2.679 12,061, 4452	4 223(2) 2.628 9724, 3516
$R_1 (I > 2\sigma (I))$ $wR_2 (all data)$ GOF on F^2	295 0.0788 0.1975 1.096	0.0250 0.0452 1.063	0.0260 0.0537 1.003	0.0253 0.0457 1.095

Anal. Found: C 11.52, H 3.43, N 11.53. Calcd. for C₁₆H₅₈N₁₄Se₈₋Dy₂Sb₂ (**2c**, 1646.94): C 11.67, H 3.55, N 11.67%.

2.3. Synthesis of $[Ln(en)(trien)(\mu-\eta^1,\eta^2-SbSe_4)]_{\infty}$ (Ln=Ce(3a), Nd(3b)) and $[Sm(en)(trien)(\eta^2-SbSe_4)]$ (4a)

CeCl₃ (123 mg, 0.5 mmol), Sb (61 mg, 0.25 mmol), Se (158 mg, 2 mmol), and 2 mL of a mixed en/trien (1:1(v/v)) solvent were loaded into a Teflon-lined stainless steel autoclave with an inner volume of 15 mL. The reaction was run at 180 °C for 6 days, then cooled to ambient temperature. Orange–yellow prism crystals of **3a** were filtered off, washed with ethanol and stored under a vacuum (65% yield based on Sb). Red crystals of **3b** (62% yield) and **4a** (66% yield) were prepared with a procedure similar to that for the synthesis of **3a**, except that Nd₂O₃ and Sm₂O₃ were used instead of CeCl₃, respectively. Anal. Found: C 12.13, H 3.36, N 10.66. Calcd. for C₈H₂₆N₆Se₄LaSb (**3a**, 784.05): C 12.27, H 3.35, N 10.74%. Anal. Found: C 12.03, H 3.22, N 10.56. Calcd. for C₈H₂₆N₆Se₄MdSb (**3b**, 788.18): C 12.19, H 3.32, N 10.66%. Anal. Found: C 12.01, H 3.25, N 10.43. Calcd. for C₈H₂₆N₆Se₄SmSb (**4a**, 794.29): C 12.10, H 3.30, N 10.58%.

2.4. X-ray structure determination

All data were collected on a Rigaku Mercury CCD diffractometer with the exception of **2c**, **3a**, **3b** and **3c** on a Rigaku Saturn CCD diffractometer, using graphite-monochromated Mo-K α radiation with a ω -scanning mode to the maximum 2 θ between 49.00° (**2c**) and 55.00° (**1a**). An empirical absorption correction was applied to the data. The structures were solved with SHELXS-97 [22], and refinement was performed against F^2 using SHELXL-97 [22]. All the non-hydrogen atoms were refined anisotropically. Atoms C(11) in **2a**, C(12) in **2b** and C(9) in **2c** are disordered and the occupancies are refined as 54% and 46%, 50% and 50%, 60% and 40%, respectively. H atoms were geometrically positioned and refined using the riding model. Technical details of data collections and refinement are summarized in Table 1.

3. Results and discussion

3.1. Syntheses

The title complexes were prepared by the reactions of Ln₂O₃ (CeCl₃ for **1a** and **3a**). Sb and Se at 180 °C for 6 days in 1:1(v/v)mixed en/dien and en/trien solvents, respectively (Scheme 1). Under solvothermal conditions, the lanthanide oxides react in situ to form the mixed-coordinated $[Ln(en)_2(dien)]^{3+}$ and $[Ln(en)(trien)]^{3+}$ complex cations. The cations were coordinated by [SbSe₄]³⁻ anions to generate neutral lanthanide complexes 1a - 2c and 3a - 4a, respectively. But the Ln₂O₃. Sb and Se reactions from Tb₂O₃ on in en/dien and from Gd₂O₃ on in en/trien across the lanthanide series vielded the Ln^{3+} -en complexes with the same general formula $[Ln(en)_4]$ Sb-Se₄ · 0.5en, which are isostructural with the compounds synthesized in the single en solvent several years ago [19]. The dien and trien ligands do not take part in the coordination to these lanthanides in the reactions. The Ln³⁺ ion size influences the formation of lanthanide complexes with the en/dien and en/trien mixed ligands. This work has shown that the solvothermal reaction of Ln₂O₃ in mixed polyamine solvents is an convenient and effective method to prepare Ln complexes with mixed ethylene polyamine ligands for the Ln³⁺ metals with larger ionic radius.

3.2. Structures of 1a - 1b and 2a - 2c

Complexes **1a** and **1b** crystallize in the monoclinic space group $P2_1/n$ with four formula units in the unit cell, and they are isostructural with the La³⁺ analog $[La(en)_2(dien)(\eta^2-SbSe_4)]$ (1) [20]. The crystal structure of **1a** is depicted in Fig. 1. Both Ce^{3+} and Nd³⁺ ions are coordinated by two bidentate en ligands, and one tridentate dien ligand, forming seven-coordinate complex cations $[Ln(en)_2(dien)]^{3+}$ (Ln=Ce, Nd). The $[SbSe_4]^{3-}$ anion acts as a bidentate η^2 -SbSe₄ chelating ligand with Se(1) and Se(2) atoms to coordinate to $[Ln(en)_2(dien)]^{3+}$, resulting in the neutral complexes [$Ln(en)_2(dien)(\eta^2-SbSe_4)$] (Fig. 1(a)). The Ln³⁺ ions are ninefold coordinated in a distorted monocapped square antiprismatic environment. (Fig. 1(b)). The Ln-Se [av. Ce - Se = 3.1775(7) Å, Nd - Se = 3.1384(9) Å and Ln - N bondlengths [av. Ce - N = 2.712(4) Å, Nd - N = 2.657(6) Å] (Table 2) are consistent with corresponding bond lengths observed in literature [23-26], and decrease from Ce to Nd due to the lanthanide contraction. The Sb atom is coordinated by four Se atoms, forming a distorted tetrahedron with Sb – Se lengths in the range of 2.4555(15)-2.4886(8) Å and the Se – Sb – Se angles in the range of $101.73(5)^{\circ}-114.11(6)^{\circ}$ (Table 2) in agreement with literature data [11,27]. In **1a** and **1b** the $[Ln(en)_2(dien)(\eta^2-SbSe_4)]$ molecules are linked end-to-end via hydrogen bonding between

Fig. 1. (a) Crystal structure of 1a with the labeling scheme (thermal ellipsoids are drawn at 30% probability). The hydrogen atoms are omitted for clarity. (b) Crystal structure of polyhedron CeN₇Se₂ in 1a.

Table 2		
Selected bond lengths (Å) and angles	(deg) for 1a-4a .

	1a (<i>Ln</i> =Ce)	1b (<i>Ln</i> =Nd)	2a (<i>Ln</i> =Sm)	2b (<i>Ln</i> =Gd)
$Sb - Se$ $Ln - Se$ $Ln - N$ $Se - Sb - Se$ $Sb - Se(1) - Ln$ $Sb - Se(2) - Ln^{a}$ $Se - Ln - Se$	2.4589(7) – 2.4886(8) 3.1615(7), 3.1935(8) 2.680(5) – 2.748(5) 102.52(2) – 113.58(3) 90.36(2) 89.318(19) 75.007(17)	2.4563(10) - 2.4851(9) 3.1188(9), 3.1581(9) 2.620(6) - 2.691(6) 101.75(3) - 114.05(4) 90.82(3) 89.60(2) 75.50(2)	$\begin{array}{c} 2.422(2)-2.498(2)\\ 3.004(2), 3.026(2)\\ 2.478(14)-2.581(18)\\ 103.24(8)-114.45(9)\\ 119.59(7)\\ 124.15(7) \end{array}$	$\begin{array}{c} 2.451(3)-2.459(3)\\ 3.006(3), 3.021(3)\\ 2.50(2)-2.60(2)\\ 103.26(10)-114.33(12)\\ 124.10(10)\\ 120.08(9) \end{array}$
N - Ln - Se N - Ln - N 0.5	68.02(10) - 154.09(11) 61.88(15) - 142.70(15) 2c (<i>Ln</i> =Dy)	68.18(12)-152.77(15) 62.0(2)-143.3(2) 3a (<i>Ln</i> =Ce)	72.8(4) – 152.2(4) 64.3(5) – 145.0(5) 3b (<i>Ln</i> =Nd)	73.2(5) – 152.2(5) 65.0(7) – 145.4(7) 4a (<i>Ln</i> =Sm)
$\begin{array}{c} Sb-Se\\ Ln-Se\\ Ln-N\\ Se-Sb-Se\\ Sb-Se(1)-Ln\\ Sb-Se(2)-Ln^{a}\\ Sb-Se(3)-Ln\\ Se-Ln-Se\\ N-Ln-Se\\ N-Ln-N \end{array}$	$\begin{array}{c} 2.430(5)-2.502(4)\\ 2.980(4), 2.997(4)\\ 2.43(3)-2.56(3)\\ 103.26(14)-114.43(19)\\ 120.35(13)\\ 124.34(14)\\ \end{array}$	$\begin{array}{c} 2.4549(6)-2.4700(6)\\ 3.1834(7)-3.3091(6)\\ 2.656(4)-2.717(4)\\ 103.78(2)-112.06(3)\\ 89.307(19)\\ 90.233(19)\\ 117.83(2)\\ 74.505(15)-137.819(19)\\ 66.36(11)-143.35(11)\\ 62.88(14)-149.18(14)\\ \end{array}$	$\begin{array}{c} 2.4571(6)-2.4712(6)\\ 3.1727(6)-3.3044(6)\\ 2.579(3)-2.643(4)\\ 102.41(2)-113.34(2)\\ 89.590(17)\\ 89.622(17)\\ 120.79(2)\\ 74.434(16)-137.159(14)\\ 65.97(8)-147.74(8)\\ 64.34(12)-147.87(12)\\ \end{array}$	$\begin{array}{c} 2.4330(6)-2.4816(6)\\ 3.0059(6), 3.0553(6)\\ 2.557(4)-2.592(4)\\ 99.79(2)-113.35(2)\\ 91.323(18)\\ 90.230(18)\\ \hline\\ 77.492(16)\\ 69.61(8)-147.34(9)\\ 65.56(12)-159.53(13)\\ \end{array}$

^a Refer to the Sb - Se(5) - Ln angle in 2a - 2c.

Fig. 2. A view of the layer constructed by the $[Ce(en)_2(dien)(\eta^2-SbSe_4)]$ moieties via N-H···Se interactions (shown in dashed lines) in 1a.

amino group and Se atoms to form a chain-like structure. Adjacent chains are linked through further $N-H\cdots$ Se interactions into layers perpendicular to the *b* axis (Fig. 2), and then, the layers are connected into a 3-D supramolecular network via the $N-H\cdots$ Se bonds (Fig. S1 in the Supplementary material).

Complexes $2\mathbf{a} - 2\mathbf{c}$ are isostructural with general formula $[Ln(en)_2(dien)(SbSe_4)]_2$ $(Ln=Sm(2\mathbf{a}), Gd(2\mathbf{b}), Dy(2\mathbf{c}))$ (Table 1). There are two crystallographically independent $[Ln(en)_2(dien)(SbSe_4)]$ moieties in $2\mathbf{a} - 2\mathbf{c}$. Both $Ln^{3+}(1)$ and $Ln^{3+}(2)$ ions are coordinated by two bidentate en, one tridentate dien and one monodentate $[SbSe_4]^{3-}$ ligands, forming the mixed-coordinated neutral complex $[Ln(en)_2(dien)(SbSe_4)]$. The structure of $[Sm(1)(en)_2(dien)(Sb(1)Se_4)]$ in $2\mathbf{a}$ is depicted in Fig. 3(a). Both $Ln^{3+}(1)$ and $Ln^{3+}(2)$ are in eight-fold coordination environments and form bicapped trigonal prisms (Fig. 3(b)). The $[Ln(1)(en)_2(dien)(Sb(1)Se_4)]$ and $[Ln(2)(en)_2(dien)(Sb(2)Se_4)]$ moieties exhibit very similar molecular structures except that the former possesses a smaller Ln–Se–Sb angle than the latter (Table 2). The Ln–N and Ln–Se bond lengths of $2\mathbf{a} - 2\mathbf{c}$ (Table 2) are in the

range of the literature values, respectively [19,20,24,28]. In **2a** – **2c**, the tetrahedral [SbSe₄]^{3–} anion acts as a monodentate ligand to the Ln³⁺ ions. The Sb–Se lengths and Se–Sb–Se angles agree with those of the corresponding values in **1a** and **1b** (Table 2). In **2a** – **2c**, the complexes are alternatively connected end to end into an one-dimensional chain parallel to the *c* axis (Fig. 4) through N–H…Se contacts with N···Se separations between 3.412(16) and 3.68(2) Å and corresponding N–H…Se angles between 142.4° and 167.0°, indicating weak hydrogen bonds. The chains are linked into a 3-D H-bonded network via further N–H…Se bonds (Fig. S2 in the Supplementary material).

3.3. Structures of 3a, 3b and 4a

Complexes **3a** and **3b** crystallize in orthorhombic and monoclinic crystal system, respectively, but they display the same structure. The Ce³⁺ and Nd³⁺ ions are coordinated by a bidentate en and a tetradentate trien ligands, forming six-coordinate complex cations $[Ln(en)(trien)]^{3+}$ (Ln=Ce, Nd). The $[SbSe_4]^{3-}$ anion

Fig. 3. (a) Crystal structure of the [Sm(1)(en)₂(dien)(Sb(1)Se₄)] moiety in 2a with the labeling scheme (thermal ellipsoids are drawn at 30% probability). The hydrogen atoms are omitted for clarity. (b) Crystal structure of polyhedron SmN₇Se in 2a.

Fig. 4. A view of the layer constructed by the [Sm(1)(en)₂(dien)(Sb(1)Se₄)] and [Sm(2)(en)₂(dien)(Sb(2)Se₄)] moieties via N-H…Se interactions (shown in dashed lines) in 2a.

Fig. 5. Crystal structure of 3a with the labeling scheme (thermal ellipsoids are drawn at 30% probability). The hydrogen atoms are omitted for clarity.

acts as a tridentate μ - η^1 , η^2 -SbSe₄ bridging ligand with Se(1), Se(2) and Se(3) atoms to link the $[Ln(en)(trien)]^{3+}$ cations into neutral coordination polymer $[Ln(en)(trien)(\mu-\eta^1,\eta^2-\text{SbSe}_4)]_{\infty}$ (Fig. 5). The Sb–Se lengths and the Se–Sb–Se angles are in the range of the corresponding values in **1a** and **1b** (Table 1). The Ln³⁺ ions are coordinated by six N atoms and three Se atoms forming distorted monocapped square antiprisms LnN₆Se₃ as the CeN₇Se₂ polyhedron in **1a**. In **3a**, the bond lengths of Ce–Se(1) [3.2254(7) Å], Ce–Se(2) [3.1834(7) Å] and Ce–N [av. Ce–N= 2.690(4) Å] (Table 2) are comparable to those of **1a**, except Ce–Se(3) [3.3091(6) Å] being slightly longer. The same Nd–Se and Nd–N bond length evolution is observed between **1b** and **3b**. In the crystal structures of **3a** and **3b**, the [Ln(en)(trien) (μ - η^1 , η^2 -SbSe₄)]_∞ chains interact with neighbors via N–H…Se hydrogen bonding, generating a layer perpendicular to the *c* axis

(Fig. 6). The layers are linked into a 3-D H-bonding network via addition $N-H\cdots$ Se hydrogen bonds (Fig. S3 in the Supplementary material).

Complex **4a** crystallizes in the monoclinic space group $P_{2_1/c}$ with four formula units in the unit cell. It is isostructural with [Eu(en)(trien)(η^2 -SbSe₄)] **(4)** [20]. The crystal structure of **4a** is depicted in Fig. 7. The Sm³⁺ ion is coordinated by one bidentate en, and one tetradentate trien ligands, yielding the six-coordinated complex. Like the [SbSe₄]³⁻ anions in **1a** and **1b**, the [SbSe₄]³⁻ anion in **4a** also acts in a η^2 -fashion chelating the Sm³⁺ ion via Se(1) and Se(2), leading to the neutral complex [Sm(en)(trien)(η^2 -SbSe₄)] (Fig. 7). The Sm³⁺ ion is in a bicapped trigonal prismatic environment like Sm³⁺ ion in **2a**. The average Sm – Se and Sm – N bond lengths are 3.0306(6) and 2.569(4) Å, respectively, (Table 2), which are in the range of the corresponding values obtained for **2a**.

Fig. 6. A view of the layer constructed by the $[Ce(en)(trien)(\mu-\eta^1,\eta^2-SbSe_4)]_{\infty}$ chains via N-H...Se interactions (shown in dashed lines) in **3a**.

Fig. 7. Crystal structure of 4a with the labeling scheme (thermal ellipsoids are drawn at 30% probability). The hydrogen atoms are omitted for clarity.

Fig. 8. A view of the layer constructed by the [Sm(en)(trien)(η^2 -SbSe₄)] molecules via N-H…Se interactions (shown in dashed lines) in 4a.

The [Sm(en)(trien)(η^2 -SbSe₄)] molecules are connected end to end into one dimensional chains via N – H…Se H-bonding, and the chains are further connected into a layer parallel to the (0 0 1) plane of the unit cell by hydrogen bonds (Fig. 8). The orientations of the chains alternate in the same layer. The layers are linked into a 3-D H-bonding network via further N–H…Se bonds (Fig. S4 in the Supplementary material).

3.4. Lanthanide contraction effect on the structures of [Ln(en)₂(dien)(SbSe₄)] and [Ln(en)(trien) (SbSe₄)] series.

The $[SbSe_4]^{3-}$ and $[Ln(en)_2(dien)]^{3+}$ ions form two structural types across the lanthanide series. The $[SbSe_4]^{3-}$ coordinate to $[Ln(en)_2(dien)]^{3+}$ as a η^2 -SbSe₄ ligand from La³⁺ to Nd³⁺ and acts as a mono-SbSe₄ ligand from Sm³⁺ to Dy³⁺, giving complexes

 $[Ln(en)_2(dien)(\eta^2-SbSe_4)]$ $(Ln=La(1),^{[20]}$ Ce(1a), Nd(1b)) and [$Ln(en)_2(dien)(SbSe_4)$] (Ln=Sm(2a), Gd(2b), Dy(2c)), respectively. The [Ln(en)(trien)(SbSe₄)] series also possess [Ln(en)(trien)(μ - η^1 , η^2 - $SbSe_4$]_{∞}(*Ln*=La(**3**) [20], Ce(**3a**), Nd(**3b**)) and [*Ln*(en)(trien)(η^2 - $SbSe_4$] (Ln = Eu(4) [20], Sm(4a)) two structural types, in which μ - η^1 , η^2 -SbSe₄ and η^2 -SbSe₄ coordination modes are observed for the $[SbSe_4]^{3-}$ anions. Apparently, the structural evolution in the two series is related with the Ln^{3+} ion size. The ionic radii of the Ln^{3+} ions decrease monotonously from La^{3+} to Lu^{3+} due to lanthanide contraction effect, therefore, the coordination numbers of Ln³⁺ ions prefer nine for lighter lanthanide ions and eight for the heavier ones [29]. To maintain a coordination number of nine for $La^{3+} - Nd^{3+}$, the $[SbSe_4]^{3-}$ anion coordinates to seven-coordinate $[Ln(en)_2(dien)]^{3+}$ and six-coordinate $[Ln(en)(trien)]^{3+}$ as bidentate η^2 -SbSe₄ and tridentate μ - η^1 , η^2 -SbSe₄ ligands, and [*Ln*(en)₂(dien)(η^2 -SbSe₄)] (**1**, **1a**, and **1b**) and $[Ln(en)(trien)(\mu-\eta^1,\eta^2-SbSe_4)]_{\infty}$ (**3**, **3a**, and **3b**) are obtained, respectively. From Sm on, the [SbSe₄]³⁻ anion coordinates to $[Ln(en)_2(dien)]^{3+}$ and $[Ln(en)(trien)]^{3+}$ as mono-SbSe₄ and η^2 -SbSe₄ to satisfy coordination number of eight for the Ln^{3+} ions, generating $[Ln(en)_2(dien)(\eta^2-SbSe_4)]$ (**2a**, **2b**, and **2c**) and $[Ln(en)(trien)(\eta^2-SbSe_4)]$ (4 and 4a), respectively.

3.5. Optical properties

Solid state optical absorption spectra of complexes **1a**–**4a** were recorded from powder samples at room temperature, and the representative spectra of cerium (**1a** and **3a**) and samarium

Fig. 9. Solid state optical absorption spectra for (a) **1a** (solid line) and **3a** (dashed line); (b) **2a** (solid line) and **4a** (dashed line).

(**2a** and **4a**) complexes are shown in Fig. 9(a) and (b). The complexes exhibit well-defined steep absorption edges from which the band gaps (E_g) can be estimated as 2.51, 2.13, 2.21, 2.19, 2.14, 2.38, 2.09, and 2.08 eV for **1a**-**4a**, indicating semiconducting properties of the title complexes. The band gaps are much larger than those of the layered copper selenidoantimonates Cs₂Cu₂Sb₂Se₅ (1.2-1.3 eV) [30], Cu₂SbSe₃ · 0.5en (1.58 eV) [31], and Cu₂SbSe₃ · en (1.61 eV) [31]. The electronic transitions are likely results of charge transfer from the Se²⁻-dominated valence band to the Ln³⁺-dominated conduction band, as occurred in the multinary chalcogenometalates [32].

4. Conclusion

In conclusion, we have successfully achieved the coordination of the soft base ligand $[SbSe_4]^{3-}$ to the lanthanide(III) centers by using en+dien and en+tren mixed polyamines as co-ligands. Investigation of the mixed polyamine systems Ln/Sb/Se/ (en+dien) and Ln/Sb/Se/(en+trien) reveals that two structural types of lanthanide(III) selenidoantimonates are formed across lanthanide series for the two systems. The structural turnover of two structural types occurs at Sm for both systems. The structural evolution along the lanthanide series is attributed to lanthanide contraction effect. In addition, the syntheses and characterizations of the title complexes show that the coordination of $[SbSe_4]^{3-}$ anion to the same lanthanide(III) ion can also be controlled by en/dien and en/trien mixed polyamines beside by the single polyamine [19].

Acknowledgments

This work was supported by the National Natural Science Foundation of P. R. China (No. 20771077), and the Key Laboratory of Organic Synthesis of Jiangsu Province.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.jssc.2011.03.039.

Crystallographic data for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication number no. CCDC 782813 (1a), 782814 (1b), 782815 (2a), 782816 (2b), 782817 (2c), 782818 (3a), 782819 (3b), and 782820 (4a) Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (44) 1223 336-033; e-mail: deposit@ccdc.cam.ac.uk).

References

- [1] (a) J. Li, Z. Chen, R.J. Wang, D.M. Proserpio, Coord. Chem. Rev. 190–192 (1999) 707–735;
 - (b) W.S. Sheldrick, M. Wachhold, Coord. Chem. Rev. 176 (1998) 211-322;
 - (c) Z. Chen, R.-J. Wang, J. Li, Chem. Mater. 12 (2000) 762-766;
 - (d) T. Van. Almsick, A. Loose, W.S. Sheldrick, Z. Anorg. Allg. Chem. 631 (2005) 21–23;
 - (e) D.X. Jia, J. Dai, Q.Y. Zhu, L.H. Cao, H.H. Lin, J. Solid State Chem. 178 (2005) 874–881;
- (f) D.X. Jia, A.M. Zhu, Y. Zhang, J. Deng, Monatsh. Chem. 138 (2007) 191–197.
 [2] (a) J.L. Shreeve-Keyer, C.J. Warren, S.S. Dhingra, R.C. Haushalter, Polyhedron
 - 16 (1997) 1193–1199; (b) J. Li, Z. Chen, T.J. Emge, T. Yuen, D.M. Proserpio, Inorg. Chim. Acta. 273 (1998) 310–315;
 - (c) D.X. Jia, Y. Zhang, J. Dai, Q.Y. Zhu, X.M. Gu, Z. Anorg. Allg. Chem. 630 (2004) 313–318;

- [3] (a) J.-H. Chou, M.G. Kanatzidis, Inorg. Chem. 33 (1994) 5372–5373;
 - (b) J.-H. Chou, M.G. Kanatzidis, Chem. Mater. 7 (1995) 5-8;
 - (c) M.G. Kanatzidis, J.-H. Chou, J. Solid State Chem. 127 (1996) 186–201;
 (d) J.-H. Chou, J.A. Hanko, M.G. Kanatzidis, Inorg. Chem. 36 (1997) 4–9;
 - (e) M. Wachhold, M.G. Kanatzidis, Inorg. Chem. 38 (1999) 4178–4180;
 - (f) R.G. Iyer, M.G. Kanatzidis, Inorg. Chem. 41 (2002) 3605–3607;
 - (g) M.L. Fy, G.C. Guo, X. Liu, B. Liu, L.Z. Cai, J.S. Huang, Inorg. Chem. Commun. 8 (2005) 18–21;
 - (h) X. Wang, T.-L. Sheng, S.-M. Hua, R.-B. Fu, J.-S. Chen, X.-T. Wu, J. Solid State Chem. 182 (2009) 913–919.
- [4] (a) H.O. Stephan, M.G. Kanatzidis, J. Am. Chem. Soc. 118 (1996) 12226–12227;
 - (b) H.O. Stephan, M.G. Kanatzidis, Inorg. Chem. 36 (1997) 6050-6057;
 - (c) W. Bensch, C. Näther, R. Stähler, Chem. Commun. (2001) 477-478;
 - (d) R. Stähler, C. Näther, W. Bensch, Eur. J. Inorg. Chem. (2001) 1835–1840; (e) A.V. Powell, R. Paniagua, P. Vaqueiro, A.M. Chippindale, Chem. Mater. 14
 - (2002) 1220–1224; (f) R. Stähler, B.D. Mosel, H. Eckert, W. Bensch, Angew. Chem. Int. Ed. 41 (2002) 4487–4489:
 - (g) R. Stähler, C. Näther, W. Bensch, J. Solid State Chem. 174 (2003) 264–275;
 - (h) R. Kiebach, F. Studt, C. Näther, W. Bensch, Eur. J. Inorg. Chem. (2004) 2553–2556;
 - (i) P. Vaqueiro, A.M. Chippindale, A.V. Powell, Inorg. Chem. 43 (2004) 7963–7965;
 - (j) P. Vaqueiro, D.P. Darlow, A.V. Powell, A.M. Chippindale, Solid State Ion. 172 (2004) 601–605;
 - (k) D.X. Jia, Y. Zhang, Q.X. Zhao, J. Deng, Inorg. Chem. 45 (2006) 9812-9817;
 - (l) A. Puls, C. Näther, W. Bensch, Z. Anorg. Allg. Chem. 632 (2006) 1239-1243.
- [5] M. Melullis, M.K. Brandmayer, S. Dehnen, Z. Anorg. Allg. Chem. 632 (2006) 64–72.
- [6] X.M. Gu, J. Dai, D.X. Jia, Y. Zhang, Q.Y. Zhu, Cryst. Growth Des. 5 (2005) 1845–1848.
- [7] M.L. Fu, G.C. Guo, L.Z. Cai, Z.J. Zhang, J.S. Huang, Inorg. Chem. 44 (2005) 184–186.
- [8] M. Schur, H. Rijnberk, C. Näther, W. Bensch, Polyhedron. 18 (1998) 101-107.
- [9] M. Schur, W. Bensch, Z. Naturforsch. B57 (2002) 1-7.
- [10] L. Engelke, R. Stähler, M. Schur, C. Näther, W. Bensch, R. Pöttgen, M.H. Möller, Z. Naturforsch. B59 (2004) 869–876.
- [11] W. Bensch, C. Näther, M. Schur, Chem. Commun. (1997) 1773-1774.
- [12] T. van Almsick, W.S. Sheldrick, Z. Anorg. Allg. Chem. 632 (2006) 1413–1415.
 [13] (a) M. Behrens, S. Scherb, C. Näther, W. Bensch, Z. Anorg. Allg. Chem. 629
- (2003) 1367–1373; (b) D. Givilla, W. Bensch, F. a. L. Learn, Chem. (2001) 2072, 2070.
 - (b) R. Stähler, W. Bensch, Eur. J. Inorg. Chem. (2001) 3073-3078;
 - (c) R. Stähler, W. Bensch, J. Chem. Soc. Dalton Trans. (2001) 2518–2522;
 (d) R. Kiebach, W. Bensch, R.-D. Hoffmann, R. Pöttgen, Z. Anorg. Allg. Chem.
 - 629 (2003) 532–538; (e) M. Schaefer, C. Näther, W. Bensch, Solid State Sci. 5 (2003) 1135–1139;
 - (f) M. Schaefer, R. Stähler, W.R. Kiebach, C. Näther, W. Bensch, Z. Anorg. Allg.
 - Chem. 630 (2004) 1816–1822; (g) M. Schaefer, C. Näther, N. Lehnert, W. Bensch, Inorg. Chem. 43 (2004)
 - 2914–2921; (h) M. Schaefer, D. Kurowski, A. Pfitzner, C. Näther, Z. Rejai, K. Möller,
 - N. Ziegler, W. Bensch, Inorg. Chem. 45 (2006) 3726–3731; (i) K. Möller, C. Näther, A. Bannwarth, W. Bensch, Z. Anorg. Allg. Chem. 633 (2007) 2635–2640;

- (j) H. Lühmann, Z. Rejai, K. Möller, P. Leisner, M.-E. Ordolff, C. Näther, W. Bensch, Z. Anorg. Allg. Chem. 634 (2008) 1687–1695;
- (k) L. Engelke, C. Näther, P. Leisner, W. Bensch, Z. Anorg. Allg. Chem. 634 (2008) 2959–2965:
- (1) A. Kromm, W.S. Sheldrick, Z. Anorg. Allg. Chem. 634 (2008) 121–124;
- (m) A. Kromm, W.S. Sheldrick, Z. Anorg. Allg. Chem. 634 (2008) 225-227;
- (n) A. Kromm, W.S. Sheldrick, Z. Anorg. Allg. Chem. 635 (2009) 205-207.
- [14] (a) N. Pienack, S. Lehmann, H. Lühmann, M. El-Madani, C. Näther, W. Bensch, Z. Anorg. Allg. Chem. 634 (2008) 2323–2329;
 - (b) J.F. Chen, Q.Y. Jin, Y.L. Pan, Y. Zhang, D.X. Jia, Z. Anorg. Allg. Chem. 636 (2010) 230–235.
- [15] A. Cassol, P. Di Bernardo, R. Portanova, M. Tolazzi, G. Tomat, P. Zanonato, J. Chem. Soc. Dalton Trans. (1992) 469–474.
- [16] (a) A.M. Zhu, Q.Y. Jin, D.X. Jia, J.S. Gu, Y. Zhang, Eur. J. Inorg. Chem. (2008) 4756–4761;
 - (b) J.F. Chen, Q.Y. Jin, Y.L. Pan, Y. Zhang, D.X. Jia, Chem. Commun. (2009) 7212-7214.
- [17] D.X. Jia, A.M. Zhu, J. Deng, Y. Zhang, J. Dai, Dalton Trans. (2007) 2083-2086.
- [18] (a) D.X. Jia, Q.Y. Zhu, J. Dai, W. Lu, W.J. Guo, Inorg. Chem. 44 (2005) 819-821;
 (b) D.X. Jia, Q.X. Zhao, Y. Zhang, J. Dai, J.L. Zou, Inorg. Chem. 44 (2005) 8861-8867.
- [19] (a) D.X. Jia, Q.X. Zhao, Y. Zhang, J. Dai, J. Zhou, Eur. J. Inorg. Chem. (2006) 2760–2765;
 - (b) D.X. Jia, A.M. Zhu, Q.Y. Jin, Y. Zhang, W.Q. Jiang, J. Solid State Chem. 181 (2008) 2370–2377.
- [20] D.X. Jia, Q.Y. Jin, J.F. Chen, Y.L. Pan, Y. Zhang, Inorg. Chem. 48 (2009) 8286–8293.
- [21] W.W. Wendlandt, H.G. Hecht, Reflectance Spectroscopy, Interscience Publishers, New York, 1966.
- [22] (a) G.M. Sheldrick, SHELXS-97, Program for Crystal Structure Determination, University of Göttingen, Germany, 1997;
 - (b) G.M. Sheldrick, SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- [23] I. Ijjaali, K. Mitchell, J.A. Ibers, J. Solid State Chem. 177 (2004) 760-764.
- [24] I. Ijjaali, B. Deng, J.A. Ibers, J. Solid State Chem. 178 (2005) 1503-1507.
- [25] K. Muller-Buschbaum, C.C. Quitmann, Inorg. Chem. 45 (2006) 2678-2687.
- [26] (a) M.M. Essig, D.W. Keogh, B.L. Scott, J.G. Watkin, Polyhedron 20 (2001) 373-377;
 - (b) S.A. Cotton, V. Franckevicius, R.E. How, B. Ahrens, L.L. Ooi, M.F. Mahon, P.R. Raithby, S.J. Teat, Polyhedron 22 (2003) 1489–1497.
- [27] (a) M.A. Pell, J.A. Ibers., Inorg. Chem. 35 (1996) 4559-4562;
- (b) F. Wendland, C. Näther, M. Schur, W. Bensch, Acta Crystallogr. C54 (1998) 317–319;
- (c) R. Blachnik, A. Fehlker, H. Reuter, Z. Kristallogr. 216 (2001) 211–212.
- [28] K. Mitchell, C.L. Haynes, A.D. McFarland, R.P. Van Duyne, J.A. Ibers, Inorg. Chem. 41 (2002) 1199–1204.
- [29] C. Cossy, A.C. Barnes, J.E. Enderby, A.E. Merbach, J. Chem. Phys. 90 (1989) 3254–3259.
- [30] Z. Chen, R.J. Wang, K.J. Dilks, J. Li, J. Solid State Chem. 147 (1999) 132-139.
- [31] Z. Chen, R.E. Dilks, R.J. Wang, J.Y. Lu, J. Li, Chem. Mater. 10 (1998) 3184-3188.
- [32] (a) M.L. Fu, G.C. Guo, X. Liu, W.T. Chen, B. Liu, J.S. Huang, Inorg. Chem. 45 (2006) 5793–5798;
 - (b) X. Bu, N. Zheng, X. Wang, B. Wang, P. Feng, Angew. Chem. Int. Ed. 43 (2004) 1502–1505;
 - (c) T. Wu, X. Wang, X. Bu, X. Zhao, L. Wang, P. Feng, Angew. Chem. Int. Ed. 48 (2009) 7204–7207.